Respuesta :

Given:

[tex]f(x)=\log_5x[/tex]

Required: Function values at x = 1/5, 1, 5, and 25.

Explanation:

Use the logarithmic properties

[tex]\log_b1=0,\log_b\frac{A}{B}=\log_bA-\log_bB,\log_bb=1,\log_bb^n=n[/tex]

To find f(1/5), substitute 1/5 for x into f(x).

[tex]\begin{gathered} f(\frac{1}{5})=\log_5(\frac{1}{5}) \\ =\log_51-\log_55 \\ =0-1 \\ =-1 \end{gathered}[/tex]

To find f(1), substitute 1 for x into f(x).

[tex]\begin{gathered} f(1)=\log_51 \\ =0 \end{gathered}[/tex]

To find f(5), substitute 5 for x into f(x).

[tex]\begin{gathered} f(5)=\log_55 \\ =1 \end{gathered}[/tex]

To find f(25), substitute 25 for x into f(x).

[tex]\begin{gathered} f(25)=\log_525 \\ =\log_55^2 \\ =2\log_55 \\ =2 \end{gathered}[/tex]