Given:
Equation is:
[tex]\begin{gathered} 25^x+3=176 \\ \end{gathered}[/tex]Find-:
Solve the equation
Explanation-:
Simplify the equation then,
[tex]\begin{gathered} 25^x+3=176 \\ \\ 25^x=176-3 \\ \\ 25^x=173 \\ \\ 5^{2x}=173 \end{gathered}[/tex]Taking ln both sides then,
[tex]\ln5^{2x}=\ln173[/tex]Use logarithmic property
[tex]\ln a^b=b\ln a[/tex]Then the value is:
[tex]\begin{gathered} \ln5^{2x}=\ln173 \\ \\ 2x\ln5=\ln173 \\ \\ 2x=\frac{\ln173}{\ln5} \\ \\ x=\frac{\ln173}{2\ln5} \end{gathered}[/tex]The value of "x" is:
[tex]\begin{gathered} x=\frac{\ln173}{2\ln5} \\ \\ x=\frac{5.1533}{2\times1.6094} \\ \\ x=\frac{5.1533}{3.2189} \\ \\ x=1.601 \end{gathered}[/tex]So, the value of "x" is 1.601