Respuesta :

Okay, here we have this:

Considering the provided expression, we are going to rationalize the denominator, so we obtain the following:

[tex]\begin{gathered} \frac{\sqrt[3]{3}}{\sqrt[3]{4}} \\ =\frac{\sqrt[3]{3}\cdot\sqrt[3]{4^2}}{\sqrt[3]{4}\cdot\sqrt[3]{4^2}} \\ =\frac{\sqrt[3]{3}\cdot\sqrt[3]{2^4}}{4^{\frac{1}{3}+\frac{2}{3}}} \\ =\frac{\sqrt[3]{3}\cdot2^{\frac{4}{3}}}{2^2} \\ =\frac{\sqrt[3]{3}\sqrt[3]{2}}{2} \\ =\frac{\sqrt[3]{6}}{2} \end{gathered}[/tex]

Finally we obtain that the correct answer is the second option.