Respuesta :

we are given the following sequence:

[tex]_{}29,,,,539,1083[/tex]

To go from 539 to 1083 we multiply 539 by 2 and add 5, like this:

[tex]1083=539\times2+5[/tex]

Therefore, for a number in position "n", the formula for its value is:

[tex]a_n=2a_{n-1}+5[/tex]

Solving we get:

[tex]a_{n-1}=\frac{a_n-5}{2}[/tex]

Replacing the current value for 539 we get:

[tex]a_5=\frac{a_6-5}{2}[/tex][tex]a_5=\frac{539-5}{2}=267[/tex]

Now to find the 4th value:

[tex]a_4=\frac{a_5-5}{2}[/tex]

Replacing:

[tex]a_4=\frac{267-5}{2}=131[/tex]

For the third value:

[tex]a_3=\frac{a_4-5}{2}[/tex]

Replacing:

[tex]a_3=\frac{131-5}{2}=63[/tex]

The second value is already given as 29, therefore, the first value is:

[tex]a_1=\frac{a_2-5}{2}[/tex]

Replacing:

[tex]a_1=\frac{29-5}{2}=12[/tex]

Therefore, the sequence is:

[tex]12,29,63,131,267,539,1083[/tex]