Respuesta :

Given:

There are given the equation:

[tex]cos2x+cosx=0[/tex]

Explanation:

According to the question:

We need to find the value where the given equation is satisfied.

So,

From the equation:

Put the 0 for x for the option first.

[tex]\begin{gathered} cos2x+cosx=0 \\ cos2(0)+cos(0)=0 \\ 1+1=0 \\ 2\ne0 \end{gathered}[/tex]

Then,

For the second option:

[tex]\begin{gathered} cos2x+cosx=0 \\ cos2(\frac{\pi}{3})+cos\frac{\pi}{3}\ne0 \end{gathered}[/tex]

For option third:

[tex]\begin{gathered} cos2x+cosx=0 \\ cos2(\pi)+cos(\pi)=0 \\ -1+2cos^2(\pi)+cos(\pi)=0 \\ -1+2(-1)^2-1=0 \\ -1+2-1=0 \\ 0=0 \end{gathered}[/tex]

Final answer:

Hence, the correct option C.