Respuesta :

Explanation

We are given the following function:

[tex]f(x)=3\cos2x[/tex]

We are required to determine the instantaneous rate of change at x = 2π.

This is achieved thus:

[tex]\begin{gathered} f(x)=3\cos2x \\ \frac{\triangle f(x)}{\triangle x}=3\cdot-2\sin2x \\ \frac{\operatorname{\triangle}f(x)}{\operatorname{\triangle}x}=-6\sin2x \\ \text{ At the point }x=2\pi \\ \frac{\operatorname{\triangle}f(x)}{\operatorname{\triangle}x}=0 \end{gathered}[/tex]

Hence, the answer is:

[tex]\frac{\operatorname{\triangle}f(x)}{\operatorname{\triangle}x}=0[/tex]