Let v_R and v_W be Rusells' and Wrigths' sprinkler water output rates, respectively.
Therefore,
[tex]\begin{gathered} 25\cdot v_R+30\cdot v_W=1700_{} \\ \text{and} \\ v_R+v_W=60 \end{gathered}[/tex]Where v_R and v_W are given in liters per hour.
The equations above are provided by the question. Solve the system of equations as shown below
[tex]\begin{gathered} v_R+v_W=60\Rightarrow v_R=60-v_W \\ \Rightarrow25(60-v_W)+30\cdot v_W=1700 \\ \Rightarrow1500-25v_W+30v_W=1700 \\ \Rightarrow5v_W=200 \\ \Rightarrow v_W=40 \end{gathered}[/tex]And,
[tex]\begin{gathered} v_W=40 \\ \Rightarrow v_R+40=60 \\ \Rightarrow v_R=20 \end{gathered}[/tex]Therefore, the water output rate of the Russell family's sprinkler is 20 liters per hour while the water output rate of the Wright family's sprinkler is 40 liters per hour