Respuesta :

Given a system of equations are

[tex]5x-2y+3z=6\text{ take it as equation (1)}[/tex][tex]2x-4y-3z=14\text{ take it as equation (2)}[/tex][tex]x+6y-8x=12\text{ take it as equaiton (3)}[/tex]

Adding equation (1) and equation (2), we get

[tex](5x-2y+3z)+(2x-4y-3z)=6+14[/tex]

[tex]5x+2x_{}-2y-4y+3z-3z=20[/tex]

[tex]7x_{}-6y=20\text{ take it as equation (4)}[/tex]

Multiplying equation (2) by 8, we get

[tex]8\times2x-8\times4y-8\times3z=8\times14[/tex]

[tex]16x-32y-24z=112\text{ take it as equation (5)}[/tex]

Multiplying equation (3) by (-3), we get

[tex](-3)x+(-3)6y-(-3)8x=(-3)12\text{ }[/tex]

[tex]3x-18y+24x=-36\text{ take it as equation (6)}[/tex]

Adding equation (5) and equation (6), we get

[tex](16x-32y-24z)+(3x-18y+24x)=112-36[/tex]

[tex]16x+3x-32y-18y-24z+24x=76[/tex]

[tex]19x-50y=76[/tex]

Adding 50 on both sides, we get

[tex]19x-50y+50y=76+50y[/tex]

[tex]19x=76+50y[/tex]

Dividing by 19. we get

[tex]x=\frac{76+50y}{19}[/tex]

[tex]\text{ Substitute }x=\frac{76+50y}{19}\text{ in equation (4) as follows}[/tex]

[tex]7(\frac{76+50y}{19}_{})-6y=20\text{ }[/tex]

[tex](\frac{7\times76+7\times50y}{19}_{})-\frac{19\times6y}{19}=20\text{ }[/tex]

[tex]\frac{532+350y-114y}{19}=20\text{ }[/tex]

[tex]532+236y=20\times19[/tex]

[tex]236y=380-532[/tex]

[tex]y=-\frac{152}{236}[/tex][tex]y=-0.644[/tex]

[tex]\text{ Substitute y=-0.644 in equation }x=\frac{76+50y}{19}\text{as follows}[/tex][tex]\text{x}=\frac{76+50(-0.644)}{19}[/tex]

[tex]x=2.301[/tex]

Substitute x=2.301 and y=-0.644 in equation (1), we get

[tex]5(2.301)-2(-0.644)+3z=6[/tex]

[tex]12.838+3z=6[/tex][tex]z=\frac{6-12.828}{3}[/tex][tex]z=-2.279[/tex]

Hence the solutions are

[tex]x=2.301[/tex][tex]y=-0.644[/tex]

[tex]z=-2.279[/tex]