[tex]\frac{2}{5}(_{}z+1)=y[/tex][tex]\begin{gathered} \text{Distributive property:} \\ \frac{2}{5}z+\frac{2}{5}=y \\ \\ \text{Subtract 2/5 in both sides of the equation:} \\ \frac{2}{5}z+\frac{2}{5}-\frac{2}{5}=y-\frac{2}{5} \\ \\ \frac{2}{5}z=y-\frac{2}{5} \\ \\ \text{Multiply both sides of the equation by 5/2} \\ \frac{5}{2}\cdot\frac{2}{5}z=\frac{5}{2}(y-\frac{2}{5}) \\ \\ z=\frac{5}{2}y-\frac{10}{10} \\ \\ z=\frac{5}{2}y-1 \end{gathered}[/tex]