The area of the region is the sum of the two trapezoids
Area of the trapezoid to the left :
[tex]\begin{gathered} \text{Area}=\frac{1}{2}(a+b)\times\times h \\ \text{Area}=\frac{1}{2}(7+27)\times18 \\ =\frac{1}{2}\times34\times18 \\ =306\text{ sq. units} \end{gathered}[/tex]Area of the trapezoid to the right:
[tex]\begin{gathered} \text{Area}=\frac{1}{2}(a+b)\times\times h \\ =\frac{1}{2}(13+27)\times12 \\ \text{Area}=\frac{1}{2}\times40\times12 \\ =240\text{ sq. units} \end{gathered}[/tex]Therefore, the area of the region is calculated by:
[tex]\begin{gathered} \text{Area of region=Area of left trapezoid + Area of right trapezoid} \\ =(306+240)\text{ sq. units} \\ =546\text{ sq. units} \end{gathered}[/tex]The answer is 546 sq. units [Option B]