First, let's find the value of f(x) along the midline x = 0:
[tex]\begin{gathered} f(0)=\sin 0+2 \\ f(0)=2 \end{gathered}[/tex]Then, the point at the midline is (0,2)
The minimum point nearest the midline is:
[tex]\begin{gathered} f(-\frac{\pi}{2})=_{}f(-1.57) \\ f(-\frac{\pi}{2})=\sin (-\frac{\pi}{2})+2 \\ f(-\frac{\pi}{2})=-1+2 \\ f(-\frac{\pi}{2})=1 \end{gathered}[/tex]Analogously, the maximum point nearest the midline is:
[tex]\begin{gathered} f(\frac{\pi}{2})=_{}f(1.57) \\ f(\frac{\pi}{2})=\sin (\frac{\pi}{2})+2 \\ f(\frac{\pi}{2})=1+2 \\ f(\frac{\pi}{2})=3 \end{gathered}[/tex]Then the graph is given by: