Respuesta :

Answer:

[tex]\textsf{A)} \quad -\dfrac{9}{5}[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{5.5 cm}\underline{Sum of an infinite geometric series}\\\\$S_{\infty}=\dfrac{a}{1-r}$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\ \phantom{ww}$\bullet$ $r$ is the common ratio.\\\end{minipage}}[/tex]

Given sum:

[tex]\displaystyle \sum^{\infty}_{n=1} -3\left(\dfrac{3}{8}\right)^n[/tex]

Therefore, the first term in the series is:

[tex]a_1=-3\left(\dfrac{3}{8}\right)^1=-\dfrac{9}{8}[/tex]

The common ratio, r, is:

[tex]r=\dfrac{3}{8}[/tex]

Substitute the first term, a, and common ratio, r, into the formula:

[tex]\implies S_{\infty}=\dfrac{-\frac{9}{8}}{1-\frac{3}{8}}[/tex]

[tex]\implies S_{\infty}=\dfrac{-\frac{9}{8}}{\frac{5}{8}}[/tex]

[tex]\implies S_{\infty}=-\dfrac{9}{5}[/tex]

Therefore, the sum of the given series is:

  • [tex]-\dfrac{9}{5}[/tex]

Answer:

Option A is the correct answer.