Answer:
option e) secx = 3/2
Step-by-step explanation:
Given that
[tex]2tan^2 x-sec x=1[/tex]
Let us write tan square in terms of sec square using the identity that
[tex]1+tan^2 x =sec^2 x[/tex]
Substitute for tan square
[tex]2(sec^2 x -1)-secx =1\\2sec^2x-secx-3=0\\(2secx-3)(secx+1)=0\\[/tex]
Equate each factor to 0 to get
sec x = -1 or sec x = 1.5
When sec x =-1, x =180 and tanx =0
Hence correct options is only
option e) secx = 3/2