Answer:
Option c - 1+2(cotx)^2+2(coscx)(cotx)[/tex]
Step-by-step explanation:
Given : [tex](cscx+cotx)^2[/tex]
To find : What is the expression [tex](cscx+cotx)^2[/tex] the same as?
Solution :
Step 1- Write the expression
[tex](cscx+cotx)^2[/tex]
Step 2- Solve by using identity [tex](a+b)^2=a^2+b^2+2ab[/tex]
[tex](cscx+cotx)^2=(cscx)^2+(cotx)^2+2(coscx)(cotx)[/tex]
Step 3- Using trigonometric identity [tex]csc^2\theta=1+cot^2\theta[/tex]
[tex](cscx+cotx)^2=1+(cotx)^2+(cotx)^2+2(coscx)(cotx)[/tex]
[tex](cscx+cotx)^2=1+2(cotx)^2+2(coscx)(cotx)[/tex]
Option c is same as our solution.
Therefore, Option c is correct.