Respuesta :
For any scalars [tex]c_1,c_2[/tex], we have
[tex]c_1\mathbf v\times c_2\mathbf w=c_1c_2\mathbf v\times\mathbf w[/tex]
So
[tex]\left(-\dfrac34\mathbf v\right)\times\left(-\dfrac12\mathbf w\right)=\dfrac38\mathbf v\times\mathbf w[/tex]
We have
[tex]\mathbf v\times\mathbf w=\begin{vmatrix}\mathbf i&\mathbf j&\mathbf k\\-2&12&-3\\-7&4&-6\end{vmatrix}[/tex]
[tex]=\begin{vmatrix}12&-3\\4&-6\end{vmatrix}\mathbf i-\begin{vmatrix}-2&-3\\-7&-6\end{vmatrix}\mathbf j+\begin{vmatrix}-2&12\\-7&4\end{vmatrix}\mathbf k[/tex]
[tex]=-60\,\mathbf i-(-9)\,\mathbf j+76\,\mathbf k[/tex]
[tex]=\begin{bmatrix}-60\\9\\76\end{bmatrix}[/tex]
which makes
[tex]\left(-\dfrac34\mathbf v\right)\times\left(-\dfrac12\mathbf w\right)=\dfrac38\begin{bmatrix}-60\\9\\76\end{bmatrix}=\begin{bmatrix}-\frac{45}2\\\\\frac{27}8\\\\\frac{57}2\end{bmatrix}[/tex]
[tex]c_1\mathbf v\times c_2\mathbf w=c_1c_2\mathbf v\times\mathbf w[/tex]
So
[tex]\left(-\dfrac34\mathbf v\right)\times\left(-\dfrac12\mathbf w\right)=\dfrac38\mathbf v\times\mathbf w[/tex]
We have
[tex]\mathbf v\times\mathbf w=\begin{vmatrix}\mathbf i&\mathbf j&\mathbf k\\-2&12&-3\\-7&4&-6\end{vmatrix}[/tex]
[tex]=\begin{vmatrix}12&-3\\4&-6\end{vmatrix}\mathbf i-\begin{vmatrix}-2&-3\\-7&-6\end{vmatrix}\mathbf j+\begin{vmatrix}-2&12\\-7&4\end{vmatrix}\mathbf k[/tex]
[tex]=-60\,\mathbf i-(-9)\,\mathbf j+76\,\mathbf k[/tex]
[tex]=\begin{bmatrix}-60\\9\\76\end{bmatrix}[/tex]
which makes
[tex]\left(-\dfrac34\mathbf v\right)\times\left(-\dfrac12\mathbf w\right)=\dfrac38\begin{bmatrix}-60\\9\\76\end{bmatrix}=\begin{bmatrix}-\frac{45}2\\\\\frac{27}8\\\\\frac{57}2\end{bmatrix}[/tex]