Respuesta :
The answer is 0.8450, as that is what the exact number rounds to.
Answer:
[tex]\text{sin}(57^{\circ}40')\approx 0.8450[/tex]
Step-by-step explanation:
We are asked to evaluate [tex]\text{sin}(57^{\circ}40')[/tex].
We can write our given expression as:
[tex]\text{sin}(57+\frac{40}{60}^{\circ})[/tex]
[tex]\text{sin}(57+\frac{2}{3}^{\circ})[/tex]
[tex]\text{sin}(57+0.67^{\circ})[/tex]
[tex]\text{sin}(57.67^{\circ})[/tex]
Now let us evaluate our expression.
[tex]\text{sin}(57.67^{\circ})=0.8449819[/tex]
[tex]\text{sin}(57.67^{\circ})\approx 0.8450[/tex]
Therefore, option B is the correct choice.