Respuesta :

The answer is 0.8450, as that is what the exact number rounds to.

Answer:

[tex]\text{sin}(57^{\circ}40')\approx 0.8450[/tex]

Step-by-step explanation:

We are asked to evaluate [tex]\text{sin}(57^{\circ}40')[/tex].

We can write our given expression as:

[tex]\text{sin}(57+\frac{40}{60}^{\circ})[/tex]

[tex]\text{sin}(57+\frac{2}{3}^{\circ})[/tex]

[tex]\text{sin}(57+0.67^{\circ})[/tex]

[tex]\text{sin}(57.67^{\circ})[/tex]

Now let us evaluate our expression.

[tex]\text{sin}(57.67^{\circ})=0.8449819[/tex]

[tex]\text{sin}(57.67^{\circ})\approx 0.8450[/tex]

Therefore, option B is the correct choice.