Respuesta :
Find the length of two of the sides...the length of a side is:
L^2=(x2-x1)^2+(y2-y1)^2
So if we first look at the two "bottom" points...we get:
b^2=(-1--3)^2+(-2--4)^2
b^2=2^2+2^2
b^2=4+4
b^2=8
b=√8
Now if we look at the two "left" point that make of a side we have:
s^2=(-3--6)^2+(-4--1)^2
s^2=3^2+(-3)^2
s^2=9+9
s^2=18
s=√18
So the area of this rectangle is bs so
A=√8√18
A=√144
A=12 u^2
L^2=(x2-x1)^2+(y2-y1)^2
So if we first look at the two "bottom" points...we get:
b^2=(-1--3)^2+(-2--4)^2
b^2=2^2+2^2
b^2=4+4
b^2=8
b=√8
Now if we look at the two "left" point that make of a side we have:
s^2=(-3--6)^2+(-4--1)^2
s^2=3^2+(-3)^2
s^2=9+9
s^2=18
s=√18
So the area of this rectangle is bs so
A=√8√18
A=√144
A=12 u^2