Complete the steps for solving 7 = –2x2 + 10x. Factor out of the variable terms. inside the parentheses and on the left side of the equation. Write the perfect square trinomial as a binomial squared. Divide both sides by –2. Use the square root property of equality. Add to both sides

Respuesta :

we have

[tex]7=-2x^{2} +10x[/tex]

Factor the leading coefficient

[tex]7=-2(x^{2} -5x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]7-12.50=-2(x^{2} -5x+2.5^{2})[/tex]

[tex]-5.50=-2(x^{2} -5x+2.5^{2})[/tex]

Divide both sides by [tex]-2[/tex]

[tex]2.75=(x^{2} -5x+2.5^{2})[/tex]

Rewrite as perfect squares

[tex]2.75=(x-2.5)^{2}[/tex]

Taking the square roots of both sides (square root property of equality)

[tex]x-2.5=(+/-)\sqrt{2.75}[/tex]

Remember that

[tex]\sqrt{2.75}=\sqrt{\frac{11}{4}}= \frac{\sqrt{11}}{2}[/tex]

[tex]x-2.5=(+/-)\frac{\sqrt{11}}{2}[/tex]

[tex]x=2.5(+/-)\frac{\sqrt{11}}{2}[/tex]

[tex]x=2.5+\frac{\sqrt{11}}{2}=\frac{5+\sqrt{11}}{2}[/tex]

[tex]x=2.5-\frac{\sqrt{11}}{2}=\frac{5-\sqrt{11}}{2}[/tex]

the answer is

The solutions are

[tex]x=\frac{5+\sqrt{11}}{2}[/tex]

[tex]x=\frac{5-\sqrt{11}}{2}[/tex]


Answer:

1. -2

2. add 25/4

3. sub 25/2

4. 5/2

Step-by-step explanation: