Respuesta :

The correlation coefficient is given by [tex] \frac{S_{xy}}{\sqrt{S_{xx} S_{yy} } } [/tex]

[tex]S_{xy}= [/tex]∑[tex]xy- \frac{∑x}{n}} [/tex] =[tex]S_{xy}= (2*47)(3*7)(5*26)- \frac{(10*75)}{3} [/tex]=

[tex]S_{xx}=(2^{2}+{3^{2}+5^{2})- \frac{(2+3+5)^{2} }{3} = 34.7 [/tex]

[tex]S_{yy}=( 47^{2}+2^{2}+26^{2} )[/tex][tex]- \frac{(47+2+26)^{2} }{3} [/tex]

[tex]S_{xy} [/tex]\frac{250}{ \sqrt{34.7+2884} }= 0.79 [/tex]

Answer:

The correlation coefficient is:

    -0.290742

Step-by-step explanation:

The formula for the correlation coefficient is given by :

[tex]r=\dfrac{\sum{XY}}{\sqrt{\sum{X^2}\sum{Y^2}}}---------(1)[/tex]

where,

[tex]X=x-x'\\and\\Y=y-y'[/tex]

where x' and y' are the mean of x and y entries respectively.

Now,

     x         y         X        Y          XY          X^2        Y^2

    2       47       -4/3     22       -88/3        16/9       484

    3        2        -1/3     -23        23/3        1/9         529

    5       26      5/3        1           5/3         25/9         1

-----------------------------------------------------------------------------------

  ∑XY= -20

 ∑X^2=42/9    

 ∑Y^2=1014

( Since,

[tex]x'=\dfrac{2+3+5}{3}\\\\x'=\dfrac{10}{3}[/tex]

and,

[tex]y'=\dfrac{47+2+26}{3}\\\\y'=\dfrac{75}{3}\\\\y'=25[/tex]  )

Hence,on putting all the values in equation (1) we get:

           r= -0.290742