Respuesta :
Given the equation of a line of the form: y = mx + c, where m is the slope and c is the y-intercept.
y is the dependent variable while x is the independent variable.
The value c represents the initial value of the situation represented by the line. i.e. the value of the dependent variable (y) when the independent variable (x) is 0.
The value m is the slope and represents the amount with hich the dependent variable increases for each additional increase in the value of the independent variable.
Thus, given the equation: y=11.984x+15.341,
where: y represents the total number of shorts sold each day, and x represents the day’s high temperature in °F.
The slope is 11.984 or approximately 12 and it represents the increase in the number of shorts sold for each additional increase in temperature.
Therefore, the slope of the equation represents in context of the situation that 'The vendors will sell an additional 12 pairs of shorts for every 1° increase in temperature.' (option B)
y is the dependent variable while x is the independent variable.
The value c represents the initial value of the situation represented by the line. i.e. the value of the dependent variable (y) when the independent variable (x) is 0.
The value m is the slope and represents the amount with hich the dependent variable increases for each additional increase in the value of the independent variable.
Thus, given the equation: y=11.984x+15.341,
where: y represents the total number of shorts sold each day, and x represents the day’s high temperature in °F.
The slope is 11.984 or approximately 12 and it represents the increase in the number of shorts sold for each additional increase in temperature.
Therefore, the slope of the equation represents in context of the situation that 'The vendors will sell an additional 12 pairs of shorts for every 1° increase in temperature.' (option B)