Respuesta :

When you factor (x^2-4x-5), you get (x+1)(x-5).

Answer:

[tex](x-5)(x+1)[/tex]

Step-by-step explanation:

we have

[tex]x^{2} -4x-5[/tex]

To find the factors ------> solve the quadratic equation

equate the function to zero

[tex]x^{2} -4x-5=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} -4x-5=0[/tex]

so

[tex]a=1\\b=-4\\c=-5[/tex]

substitute

[tex]x=\frac{-(-4)(+/-)\sqrt{-4^{2}-4(1)(-5)}} {2(1)}[/tex]

[tex]x=\frac{4(+/-)\sqrt{36}} {2}[/tex]

[tex]x=\frac{4(+/-)6} {2}[/tex]

[tex]x=\frac{4(+)6} {2}=5[/tex]

[tex]x=\frac{4(-)6} {2}=-1[/tex]

therefore

the factors are

[tex](x-5)(x+1)[/tex]