Respuesta :
b/a = (3 - 2i)/(2 + i)
To divide complex numbers, you multiply the numerator and denominator by the complex conjugate of the denominator.
The complex conjugate is 2 - i. ** Remember i^2 = -1 **a + bi
( 3 - 2i) ( 2 - i)
------------------- Foil numerator and denominator.
(2 + i) ( 2 - i)
6 - 3i - 4i + 2i^2 6 - 7i - 2 4 - 7i 4 - 7i
--------------------- ----------- ------- OR --- -----
4 - i^2 4 + 1 5 5 5
The answer can be written either way. If they specify real part and imaginary part, the second option is correct.
To divide complex numbers, you multiply the numerator and denominator by the complex conjugate of the denominator.
The complex conjugate is 2 - i. ** Remember i^2 = -1 **a + bi
( 3 - 2i) ( 2 - i)
------------------- Foil numerator and denominator.
(2 + i) ( 2 - i)
6 - 3i - 4i + 2i^2 6 - 7i - 2 4 - 7i 4 - 7i
--------------------- ----------- ------- OR --- -----
4 - i^2 4 + 1 5 5 5
The answer can be written either way. If they specify real part and imaginary part, the second option is correct.
The result of the quotient b/a is 4/5 -7/5 i
Given the complex numbers a = 2 + i, and b = 3 – 2i, we are to get the value of the expression b/a by rationalizing
[tex]\frac{b}{a} = \frac{3-2i}{2+1}[/tex]
Rationalize the resulting quotient as shown:
[tex]=\frac{3-2i}{2+i}\times \frac{2-i}{2-i}\\ =\frac{(3-2i)(2-i)}{(2+i)(2-i)} \\=\frac{6-3i-4i+2i^2}{4-2i+2i-i^2} \\=\frac{6-7i-2}{4+1} \\=\frac{4-7i}{5}[/tex]
Hence the result of the quotient b/a is 4/5 -7/5 i
Learn more on complex numbers here: https://brainly.com/question/12375854