Respuesta :

Answer:

The value of dissociation constant for the hypobromous acid is [tex]1.993\times 10^{-9}[/tex].

Explanation:

The pH of the solution = 4.48

Concentration of hypobromous acid,[tex][HBrO]=c=0.55 M[/tex]

The equilibrium reaction for dissociation of HBrO (weak acid) is,

                           [tex]HBrO\rightleftharpoons OBr^-+H^+[/tex]

initially conc.         c                       0         0

At eqm.              [tex]c(1-\alpha )[/tex]                [tex]c\alpha [/tex]        [tex]c\alpha [/tex]

First we have to calculate the concentration of value of degree of dissociation [tex]\alpha [/tex].

Expression for dissociation constant is given as:

[tex]k_a=\frac{(c\alpha )(c\alpha )}{c(1-\alpha )}=\frac{c(\alpha )^2}{(1-\alpha )}[/tex]..(1)

[tex][H^+]=c\alpha [/tex]

[tex]pH=4.48=-\log[H^+]=-\log[c\alpha ]=-\log[0.55 M\times \alpha ][/tex]

[tex]\alpha =6.0205\times 10^{-5}[/tex]

Substituting all the values in (1), we get the value of dissociation constant:

[tex]K_a=\frac{0.55 M(6.0205\times 10^{-5})^2}{(1-(6.0205\times 10^{-5}))}[/tex]

[tex]K_a=1.993\times 10^{-9}[/tex]

The value of dissociation constant for the hypobromous acid is [tex]1.993\times 10^{-9}[/tex].

A 0.55 M aqueous solution of HBrO has a pH of 4.48. The value of Ka for HBrO is 1.99 × 10⁻⁹.

HBrO is a weak acid according to the following equation.

HBrO ⇄ H⁺ + BrO⁻

Given the pH is 4.48, the concentration of H⁺ is:

[tex]pH = -log [H^{+} ]\\[H^{+} ] = antilog-pH = antilog-4.48 = 3.31 \times 10^{-5} M[/tex]

Given the initial concentration of the acid (Ca) is 0.55 M, we can calculate the acid dissociation constant (Ka) using the following expression.

[tex]Ka = \frac{[H^{+}]^{2} }{Ca} = \frac{(3.31 \times 10^{-5} )^{2} }{0.55} = 1.99 \times 10^{-9}[/tex]

A 0.55 M aqueous solution of HBrO has a pH of 4.48. The value of Ka for HBrO is 1.99 × 10⁻⁹.

Learn more: https://brainly.com/question/13043236