[tex]\begin{cases}u=x-y\\v=x+y\end{cases}[/tex]
[tex]\mathbf J=\dfrac{\partial(u,v)}{\partial(x,y)}=\begin{bmatrix}\dfrac{\partial u}{\partial x}&\dfrac{\partial u}{\partial y}\\\\\dfrac{\partial v}{\partial x}&\dfrac{\partial v}{\partial y}\end{bmatrix}=\begin{bmatrix}1&-1\\1&1\end{bmatrix}[/tex]
[tex]\implies\det\mathbf J=2[/tex]
The area of the region is then given by
[tex]\displaystyle\iint_R\mathrm dA=\int_{u=0}^{u=7}\int_{v=0}^{v=6}2\,\mathrm dv\,\mathrm du=84[/tex]