Evaluate the given integral by making an appropriate change of variables, where r is the rectangle enclosed by the lines x - y = 0, x - y = 7, x + y = 0, and x + y = 6.

Respuesta :

[tex]\begin{cases}u=x-y\\v=x+y\end{cases}[/tex]

[tex]\mathbf J=\dfrac{\partial(u,v)}{\partial(x,y)}=\begin{bmatrix}\dfrac{\partial u}{\partial x}&\dfrac{\partial u}{\partial y}\\\\\dfrac{\partial v}{\partial x}&\dfrac{\partial v}{\partial y}\end{bmatrix}=\begin{bmatrix}1&-1\\1&1\end{bmatrix}[/tex]
[tex]\implies\det\mathbf J=2[/tex]

The area of the region is then given by

[tex]\displaystyle\iint_R\mathrm dA=\int_{u=0}^{u=7}\int_{v=0}^{v=6}2\,\mathrm dv\,\mathrm du=84[/tex]