Respuesta :
Answers:
Angle A is approximately 70 degrees
Angle B is approximately 50.1 degrees
Angle C is approximately 59.9 degrees
---------------------------------------------------------------------
---------------------------------------------------------------------
Work Shown:
Use law of cosines to find angle A
a^2 = b^2 + c^2 - 2*b*c*cos(A)
38^2 = 31^2 + 35^2 - 2*31*35*cos(A)
1444 = 961 + 1225 - 2170*cos(A)
1444 = 2186 - 2170*cos(A)
1444 - 2186 = 2186-2170*cos(A)-2186
-742 = -2170*cos(A)
-2170*cos(A) = -742
-2170*cos(A)/(-2170) = (-742)/(-2170)
cos(A) = 0.341935483870968
arccos(cos(A)) = arccos(0.341935483870968)
A = 70.0051618474206
A = 70 ... round to the nearest tenth
-----------------------------
Use law of cosines to find angle B
b^2 = a^2 + c^2 - 2*a*c*cos(B)
31^2 = 38^2 + 35^2 - 2*38*35*cos(B)
961 = 1444 + 1225 - 2660*cos(B)
961 = 2669 - 2660*cos(B)
961 - 2669 = 2669-2660*cos(B)-2669
-1708 = -2660*cos(B)
-2660*cos(B) = -1708
-2660*cos(B)/(-2660) = (-1708)/(-2660)
cos(B) = 0.642105263157895
arccos(cos(B)) = arccos(0.642105263157895)
B = 50.0510165986799
B = 50.1 ... round to the nearest tenth
-----------------------------
Use law of cosines to find angle C
c^2 = a^2 + b^2 - 2*a*b*cos(C)
35^2 = 38^2 + 31^2 - 2*38*31*cos(C)
1225 = 1444 + 961 - 2356*cos(C)
1225 = 2405 - 2356*cos(C)
1225 - 2405 = 2405-2356*cos(C)-2405
-1180 = -2356*cos(C)
-2356*cos(C) = -1180
-2356*cos(C)/(-2356) = (-1180)/(-2356)
cos(C) = 0.500848896434635
arccos(cos(C)) = arccos(0.500848896434635)
C = 59.9438215538995
C = 59.9 ... round to the nearest tenth
-----------------------------
Or you can use the shortcut
A+B+C = 180
C = 180-A-B
C = 180-70-50.1
C = 59.9
-----------------------------
Check out the attached image for what the triangle looks like.
Angle A is approximately 70 degrees
Angle B is approximately 50.1 degrees
Angle C is approximately 59.9 degrees
---------------------------------------------------------------------
---------------------------------------------------------------------
Work Shown:
Use law of cosines to find angle A
a^2 = b^2 + c^2 - 2*b*c*cos(A)
38^2 = 31^2 + 35^2 - 2*31*35*cos(A)
1444 = 961 + 1225 - 2170*cos(A)
1444 = 2186 - 2170*cos(A)
1444 - 2186 = 2186-2170*cos(A)-2186
-742 = -2170*cos(A)
-2170*cos(A) = -742
-2170*cos(A)/(-2170) = (-742)/(-2170)
cos(A) = 0.341935483870968
arccos(cos(A)) = arccos(0.341935483870968)
A = 70.0051618474206
A = 70 ... round to the nearest tenth
-----------------------------
Use law of cosines to find angle B
b^2 = a^2 + c^2 - 2*a*c*cos(B)
31^2 = 38^2 + 35^2 - 2*38*35*cos(B)
961 = 1444 + 1225 - 2660*cos(B)
961 = 2669 - 2660*cos(B)
961 - 2669 = 2669-2660*cos(B)-2669
-1708 = -2660*cos(B)
-2660*cos(B) = -1708
-2660*cos(B)/(-2660) = (-1708)/(-2660)
cos(B) = 0.642105263157895
arccos(cos(B)) = arccos(0.642105263157895)
B = 50.0510165986799
B = 50.1 ... round to the nearest tenth
-----------------------------
Use law of cosines to find angle C
c^2 = a^2 + b^2 - 2*a*b*cos(C)
35^2 = 38^2 + 31^2 - 2*38*31*cos(C)
1225 = 1444 + 961 - 2356*cos(C)
1225 = 2405 - 2356*cos(C)
1225 - 2405 = 2405-2356*cos(C)-2405
-1180 = -2356*cos(C)
-2356*cos(C) = -1180
-2356*cos(C)/(-2356) = (-1180)/(-2356)
cos(C) = 0.500848896434635
arccos(cos(C)) = arccos(0.500848896434635)
C = 59.9438215538995
C = 59.9 ... round to the nearest tenth
-----------------------------
Or you can use the shortcut
A+B+C = 180
C = 180-A-B
C = 180-70-50.1
C = 59.9
-----------------------------
Check out the attached image for what the triangle looks like.
Using the law of cosines, the solution to the triangle, to the nearest tenth, are: A = 70°; B = 50.1°; C = 59.9°.
What is the Law of Cosine?
Law of cosine is: Cos A = (b² + c² - a²)/2bc or Cos B = (a² + c² - b²)/2ac or Cos C = (b² + a² - c²)/2ba.
Given the following:
- a = 38
- b = 31
- c = 35
Find A:
Cos A = (31² + 35² - 38²)/2(31)(35)
Cos A = 0.3419
A = cos^(-1)(0.3419)
A = 70°
Find B:
Cos B = (38² + 35² - 31²)/2(38)(35)
Cos B = 0.6421
B = cos^(-1)(0.6421)
B = 50.1°
Find C:
Cos C = (31² + 38² - 35²)/2(31)(38)
Cos C = 0.5008
C = cos^(-1)(0.5008)
C = 59.9°
Learn more about the law of cosines on:
https://brainly.com/question/4372174
#SPJ2