Respuesta :
[tex]\bf \qquad \qquad \textit{double proportional variation}\\\\
\begin{array}{llll}
\textit{\underline{y} varies directly with \underline{x}}\\
\textit{and inversely with \underline{z}}
\end{array}\implies y=\cfrac{kx}{z}\impliedby
\begin{array}{llll}
k=constant\ of\\
\qquad variation
\end{array}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \begin{cases} p=pedalisi\\ w=weight\\ s=\textit{sitting height} \end{cases}\quad \begin{array}{llll} %pelidisi, varies directly as the cube root of a person's weight in grams and inversely as the person's sitting height in centimeters. \textit{pelidisi varies directly}\\ \textit{as cube root of weight}\\ \textit{and inversely to }\\ \textit{sitting height} \end{array}\implies p=\cfrac{k\sqrt[3]{w}}{s}\\\\ -------------------------------[/tex]
[tex]\bf \textit{we know that } \begin{cases} w=48,820\\ s=78.7\\ p=100 \end{cases}\implies 100=\cfrac{k\sqrt[3]{48820}}{78.7} \\\\\\ 100\cdot 78.7=k\sqrt[3]{48820}\implies \cfrac{7870}{\sqrt[3]{48820}}=k \\\\\\ thus\qquad \boxed{p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{w}}{s}} \\\\\\ \textit{now, what is \underline{p} when } \begin{cases} w=54,688\\ s=72.6 \end{cases}?\implies p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{54688}}{72.6}[/tex]
now, if that value is less than 100, then the fellow is "undernourished", otherwise, is overfed.
[tex]\bf \begin{cases} p=pedalisi\\ w=weight\\ s=\textit{sitting height} \end{cases}\quad \begin{array}{llll} %pelidisi, varies directly as the cube root of a person's weight in grams and inversely as the person's sitting height in centimeters. \textit{pelidisi varies directly}\\ \textit{as cube root of weight}\\ \textit{and inversely to }\\ \textit{sitting height} \end{array}\implies p=\cfrac{k\sqrt[3]{w}}{s}\\\\ -------------------------------[/tex]
[tex]\bf \textit{we know that } \begin{cases} w=48,820\\ s=78.7\\ p=100 \end{cases}\implies 100=\cfrac{k\sqrt[3]{48820}}{78.7} \\\\\\ 100\cdot 78.7=k\sqrt[3]{48820}\implies \cfrac{7870}{\sqrt[3]{48820}}=k \\\\\\ thus\qquad \boxed{p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{w}}{s}} \\\\\\ \textit{now, what is \underline{p} when } \begin{cases} w=54,688\\ s=72.6 \end{cases}?\implies p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{54688}}{72.6}[/tex]
now, if that value is less than 100, then the fellow is "undernourished", otherwise, is overfed.