Respuesta :

Answer:

5.14 cm²

Explanation:

To find the area of the shaded region we first need to find the area of sector and then substract the area of triangle from the sector

Formulas:

  • [tex] \sf \: Area \: of \: sector \: = \pi {r}^{2} \times \frac{ \theta}{360 \degree} [/tex]
  • [tex] \sf \: Area \: of \: triangle \: = \frac{1}{2} ab \sin(c) [/tex]

Solution:

[tex]\sf \: Area \: of \: sector \: = \pi {r}^{2} \times \frac{ \theta}{360 \degree} [/tex]

Where,

  • radius = 5cm
  • θ = 80°

[tex] \implies \sf \: A \: = \pi ({5}^{2}) \times \frac{ 80 \degree}{360 \degree} [/tex]

[tex] \implies \sf \: A \: = \pi ({5}^{2}) \times \frac{ 4 }{18} [/tex]

[tex] \implies \sf \: A \: = \: 25 \pi \times \frac{ 4 }{18} [/tex]

[tex] \implies \sf \: A \: = \: \frac{ 100 \pi }{18} [/tex]

[tex] \implies \sf \: A \: = \: \frac{ 100 \pi }{18} [/tex]

[tex] \implies \sf \: A \: \approx \: 17.45[/tex]

Now we can find the area of triangle.

[tex] \sf \: Area \: of \: triangle \: = \frac{1}{2} ab \sin(c) [/tex]

Where,

  • a = 5cm
  • b = 5cm
  • c = θ = 80°

[tex] \implies \sf \: A \: = \frac{1}{2} (5)(5)\sin(80 \degree) [/tex]

[tex] \implies \sf \: A\: = \frac{25}{2} \sin(80 \degree) [/tex]

[tex] \implies \sf \: A\: \approx 12.31[/tex]

We've got the values for area of sector and area of triangle, so it's time to find the shaded area which the formula represented by;

[tex]\sf \: A_{shaded} \: = A_{sector}\: - \: A_{triangle}[/tex]

[tex]\sf \: A_{shaded} \: = 17.45\: - \: 12.31[/tex]

[tex]\sf \: A_{shaded} \: = 17.45\: - \: 12.31 [/tex]

[tex]\sf \: A_{shaded} \: = 5.14 cm {}^{2} [/tex]

Therefore, the shaded area is 5.14 square centimeters.

Learn more concerning finding shaded regions here: brainly.com/question/22307176