Respuesta :

now, recall that, to get the determinant of a 3x3 or higher matrix, you pick a column or row to get the cofactors, also recall that the cofactors need to go witht the checkerboard pattern, so   [tex]\bf \begin{bmatrix} +&-&+&-&+&...\\ -&+&-&+&...\\ +&-&+&-&+&... \end{bmatrix}[/tex]  and so on.

so, let's use the last column, 2,0,4, because it has a zero there, and we can use that as a cofactor to simply get a 0 as a product with the minor.

[tex]\bf \begin{bmatrix} 4&-1&\boxed{2}\\ 6&-1&\boxed{0}\\ 1&-3&\boxed{4} \end{bmatrix}\impliedby \textit{let's use the 3rd column for our cofactors}\\\\ -------------------------------\\\\ \begin{bmatrix} &&\boxed{2}\\ 6&-1&\\ 1&-3& \end{bmatrix}\implies +2 \begin{bmatrix} 6&-1\\1&-3 \end{bmatrix}\implies +2[(-18)-(-1)] \\\\\\ +2(-17)\implies -34\\\\ -------------------------------\\\\[/tex]

[tex]\bf \begin{bmatrix} 4&-1&\\ &&\boxed{0}\\ 1&-3& \end{bmatrix}\implies -0 \begin{bmatrix} 4&-1\\1&-3 \end{bmatrix}\implies -0[(-12)-(-1)]\implies 0\\\\ -------------------------------\\\\ \begin{bmatrix} 4&-1&\\ 6&-1&\\ &&\boxed{4} \end{bmatrix}\implies +4 \begin{bmatrix} 4&-1\\6&-1 \end{bmatrix}\implies +4[(-4)-(-6)] \\\\\\ +4[2]\implies 8\\\\ -------------------------------\\\\[/tex]

so our determinant comes down to the sum of those three products... so -34 -0 + 8.

and surely you know how much that is.