The working equation to be used here is the Planck's equation. This was derived using the wave behavior theory of the light and electromagnetic waves. According to this equation, electron transfer from orbital to orbital in discrete packets of energy called quanta. When an electron moves to a higher energy level, it absorbs energy. On the other hand, when it lowers to an energy level, it releases energy by emitting light. Hence, the wavelength of the light or magnetic wave can be determined.
E = hν = hc/λ, where ν is the frequency, λ is the wavelength, h is the Planck's constant equal to 6.626×10⁻³⁴ J-s and c is the speed of light equal to 3×10⁸ m/s.
Knowing the energy to be 164 kJ or 164,000 J, the wavelength is equal to
164,000 = (6.626×10⁻³⁴)(3×10⁸ m/s)/λ
λ = 1.212×10⁻³⁰ meters