Respuesta :

msm555

Answer:

[tex] r^{-1}(x) = \sqrt[3]{(x - 2)^3 + 5} [/tex]

Step-by-step explanation:

To find the inverse function [tex] r^{-1}(x) [/tex] for the given function [tex] r(x) = (x^3 - 5)^{\frac{1}{3}} + 2 [/tex], we follow these steps:

Replace [tex] r(x) [/tex] with [tex] y [/tex]:

[tex] y = (x^3 - 5)^{\frac{1}{3}} + 2 [/tex]

Swap [tex] x [/tex] and [tex] y [/tex] to express the inverse function:

[tex] x = (y^3 - 5)^{\frac{1}{3}} + 2 [/tex]

Solve for [tex] y [/tex]:

[tex] x - 2 = (y^3 - 5)^{\frac{1}{3}} [/tex]

Cube both sides to eliminate the cube root:

[tex] (x - 2)^3 = y^3 - 5 [/tex]

Add 5 to both sides:

[tex] (x - 2)^3 + 5 = y^3 [/tex]

Take the cube root of both sides:

[tex] \sqrt[3]{(x - 2)^3 + 5} = y [/tex]

Therefore, the inverse function [tex] r^{-1}(x) [/tex] is given by:

[tex] r^{-1}(x) = \sqrt[3]{(x - 2)^3 + 5} [/tex]

So, the function has an inverse function, and its formula is:

[tex] r^{-1}(x) = \sqrt[3]{(x - 2)^3 + 5} [/tex]