Respuesta :
hello :
If f(x)=x/2-2 and g(x)=2x^2+x-3, find (f+g)(x)
(f+g)(x)= f(x) +g(x) = x/2-2 +2x²+x-3 = x/2 +2x²+x-5
(f+g)(x)= (x+4x²-2x-10) /2
(f+g)(x)= (4x²+3x-10)/2 = 2x²+3/2 x -5
If f(x)=x/2-2 and g(x)=2x^2+x-3, find (f+g)(x)
(f+g)(x)= f(x) +g(x) = x/2-2 +2x²+x-3 = x/2 +2x²+x-5
(f+g)(x)= (x+4x²-2x-10) /2
(f+g)(x)= (4x²+3x-10)/2 = 2x²+3/2 x -5
Answer:
B. [tex]2x^2+\frac{3x}{2}-5[/tex]
Step-by-step explanation:
Given functions,
[tex]f(x)=\frac{x}{2}-2[/tex]
[tex]g(x)=2x^2+x-3[/tex]
Since, (f+g)(x) = f(x) + g(x)
[tex]=\frac{x}{2}-2+2x^2+x-3[/tex]
[tex]=2x^2+\frac{x+2x}{2}-5[/tex] ( combine like terms )
[tex]=2x^2+\frac{3x}{2}-5[/tex]
Option 'B' is correct.