Respuesta :
Put the two equations together and combine like terms
3x^2+5x^2-2x+6x+4-8
8x^2-2x+6x+4-8
8x^2+4x+4-8
8x^2+4x-4
Final answer: C
3x^2+5x^2-2x+6x+4-8
8x^2-2x+6x+4-8
8x^2+4x+4-8
8x^2+4x-4
Final answer: C
Answer:
Option C is correct
[tex](f+g)(x)=8x^2+4x-4[/tex]
Explanation:
Given the function:
[tex]f(x) = 3x^2-2x+4[/tex]
[tex]g(x) = 5x^2+6x-8[/tex]
[tex](f+g)(x) =f(x)+g(x)[/tex]
Substitute the given values we have;
[tex](f+g)(x) = 3x^2-2x+4+5x^2+6x-8[/tex]
Combine like terms;
[tex](f+g)(x) = 8x^2+4x-4[/tex]
Therefore the value of [tex](f+g)(x)[/tex] is, [tex]8x^2+4x-4[/tex]