Respuesta :
Let's see...
[tex]d= \sqrt{(3-(-2))^{2} + (5-0)^2} \\ d=\sqrt{(5)^{2}+(5)^{2}} \\ d=\sqrt{25+25} \\ d=\sqrt{50} \\ d=7.071, or 7.07[/tex]
[tex]d= \sqrt{(3-(-2))^{2} + (5-0)^2} \\ d=\sqrt{(5)^{2}+(5)^{2}} \\ d=\sqrt{25+25} \\ d=\sqrt{50} \\ d=7.071, or 7.07[/tex]
Answer: 7.07 units.
Step-by-step explanation:
The distance between any two point (a,b) and (c,d) on coordinate plane is given by :-
[tex]\text{Distance=}\sqrt{(d-b)^2+(c-a)^2}[/tex]
By considering the given information , we have
C= (-2,0) and D = (3,5)
Then, the distance (in units) between points C and D will be :
[tex]CD=\sqrt{(5-0)^2+(3-(-2))^2}[/tex]
[tex]\Rightarrow\ CD=\sqrt{(5)^2+(3+2)^2}[/tex]
[tex]\Rightarrow\ CD=\sqrt{25+25}[/tex]
[tex]\Rightarrow\ CD=\sqrt{50}=7.07106781187\approx7.07[/tex]
[Rounded to the nearest hundredth]
Hence, the distance (in units) between points C and D = 7.07 units.