Respuesta :

b^-2/ab^-3 = b^-2/b^-3 x 1/a = b^[-2-(-3)] x 1/a = b x 1/a = b/a

we have

[tex]\frac{b^{-2}} {ab^{-3}}[/tex]

we know that

[tex]\frac{b^{-2}} {ab^{-3}} =(\frac{1}{b^{2}})( \frac{1}{a})( b^{3})\\ \\=\frac{b^{3}}{ab^{2}} \\ \\= \frac{b}{a}[/tex]

therefore

the answer is the option

[tex]\frac{b}{a}[/tex]