what is the simplified form of the following expression?Assume a is greater/= 0, and c is greater/= 0

14(^4√a^5 b^2 c^4) -7ac(^4√ab^2)

A) 7ac(^4√ab^2)

B) 7(^4√ab^2)

C) -7(^4√ab^2)

D) -7ab(^4√ab^2)

Respuesta :

Answer:

Option (1) is correct.

On simplifying [tex]14\sqrt[4]{a^5b^2c^4} -7ac\sqrt[4]{ab^2}[/tex] we get, [tex]7ac\sqrt[4]{ab^2}[/tex]

Step-by-step explanation:

Consider the given expression,

[tex]14\sqrt[4]{a^5b^2c^4} -7ac\sqrt[4]{ab^2}[/tex]

We have write the above expression in simplified form.

Consider the first term,

[tex]14\sqrt[4]{a^5b^2c^4}[/tex] can be written as ,

[tex]14\sqrt[4]{a^5b^2c^4}=14\sqrt[4]{a^4ab^2c^4}[/tex]

Taking a and c out the fourth root, we get,

[tex]14\sqrt[4]{a^4ab^2c^4}=14ac\sqrt[4]{ab^2}[/tex]

Now the expression becomes,

[tex]14ac\sqrt[4]{ab^2} -7ac\sqrt[4]{ab^2}[/tex]

Now we can simplify this, taking [tex]7ac\sqrt[4]{ab^2}[/tex] common from both the term, we get,

[tex]7ac\sqrt[4]{ab^2}(2-1)[/tex]

On solving we get,

[tex]\rightarrow 7ac\sqrt[4]{ab^2}[/tex]

Option (1) is correct.

Thus, on simplifying [tex]14\sqrt[4]{a^5b^2c^4} -7ac\sqrt[4]{ab^2}[/tex] we get, [tex]7ac\sqrt[4]{ab^2}[/tex]