Respuesta :
The answer is c because since twenty minus eight is twelve one third times twelve is four
The correct answer is: [C]: "10" .
____________________________________________________
→ " x = 10 " .
____________________________________________________
Explanation:
____________________________________________________
Given:
____________________________________________________
→ (1/3) * (2x − 8) = 4 ; Solve for "x" ;
____________________________________________________
To get rid of the "fraction" ; multiple BOTH SIDE of the equation by "3" :
→ 3 * { (1/3) * (2x − 8) } = 3 * 4 ;
to get:
1(2x − 8) = 12 ;
↔ 2x − 8 = 12 ;
Add "8" to BOTH SIDES of the equation ;
→ 2x − 8 + 8 = 12 + 8 ;
to get:
→ 2x = 20 ;
Divide EACH SIDE of the equation by "2" ;
to isolate "x" on one side of the equation; & to solve for "x"
→ 2x / 2 = 20/ 2 ;
→ x = 10 ; which is: Answer choice: [C]: "10" .
________________________________________________
Let us check our answer: " x = 10" ; by plugging in "10" for all values of "x" into the original equation; to see if the answer holds true for the equation ; that is, to see if both sides of the equation are equal when "x = 10" ;
The original equation: " (1/3) * (2x − 8) = 4 " .
→ (1/3) * [2(10) − 8) =? 4 ?? ;
→ (1/3) * [20 − 8) =? 4 ?? ;
→ (1/3) * (12) =? 4 ?? ; Yes!
_____________________________________________
____________________________________________________
→ " x = 10 " .
____________________________________________________
Explanation:
____________________________________________________
Given:
____________________________________________________
→ (1/3) * (2x − 8) = 4 ; Solve for "x" ;
____________________________________________________
To get rid of the "fraction" ; multiple BOTH SIDE of the equation by "3" :
→ 3 * { (1/3) * (2x − 8) } = 3 * 4 ;
to get:
1(2x − 8) = 12 ;
↔ 2x − 8 = 12 ;
Add "8" to BOTH SIDES of the equation ;
→ 2x − 8 + 8 = 12 + 8 ;
to get:
→ 2x = 20 ;
Divide EACH SIDE of the equation by "2" ;
to isolate "x" on one side of the equation; & to solve for "x"
→ 2x / 2 = 20/ 2 ;
→ x = 10 ; which is: Answer choice: [C]: "10" .
________________________________________________
Let us check our answer: " x = 10" ; by plugging in "10" for all values of "x" into the original equation; to see if the answer holds true for the equation ; that is, to see if both sides of the equation are equal when "x = 10" ;
The original equation: " (1/3) * (2x − 8) = 4 " .
→ (1/3) * [2(10) − 8) =? 4 ?? ;
→ (1/3) * [20 − 8) =? 4 ?? ;
→ (1/3) * (12) =? 4 ?? ; Yes!
_____________________________________________