Walt received a package that is 2 1/3 inches long, 6 3/4 inches high, and 8 1/2 inches wide. What is the surface area of the package?

Respuesta :

Add whole numbers: 2 + 6 + 8 = 16
Add fractions:

= 1/3 + 3/4 + 1/2

= (8 + 18 + 12) ÷ 24

= 38/24 or 1 14/24 or simplified to 1 7/12

Total surface area = 16 + 1 7/12 or 17 7/12


Answer : The surface area of the package is, [tex]185.9inch^3[/tex]

Step-by-step explanation :

The given package is in cuboid shape. Now we have to calculate the surface area of the package by using volume of cuboid.

Formula used for volume of cuboid is:

[tex]V=2(lb+bh+hl)[/tex]

where,

V = volume of package

l = length of package = [tex]2\frac{1}{3}inch=\frac{7}{3}inch[/tex]

b = width of package = [tex]8\frac{1}{2}inch=\frac{17}{2}inch[/tex]

h = height of package = [tex]6\frac{3}{4}inch=\frac{27}{4}inch[/tex]

Now put all the given values in the above formula, we get:

[tex]V=2\times [(\frac{7}{3}\times \frac{17}{2})+(\frac{17}{2}\times \frac{27}{4})+(\frac{27}{4}\times \frac{7}{3})][/tex]

[tex]V=2\times [\frac{119}{6}+\frac{459}{8}+\frac{63}{4}][/tex]

[tex]V=185.9inch^3[/tex]

Therefore, the surface area of the package is, [tex]185.9inch^3[/tex]