Respuesta :
Add whole numbers: 2 + 6 + 8 = 16
Add fractions:
= 1/3 + 3/4 + 1/2
= (8 + 18 + 12) ÷ 24
= 38/24 or 1 14/24 or simplified to 1 7/12
Total surface area = 16 + 1 7/12 or 17 7/12
Add fractions:
= 1/3 + 3/4 + 1/2
= (8 + 18 + 12) ÷ 24
= 38/24 or 1 14/24 or simplified to 1 7/12
Total surface area = 16 + 1 7/12 or 17 7/12
Answer : The surface area of the package is, [tex]185.9inch^3[/tex]
Step-by-step explanation :
The given package is in cuboid shape. Now we have to calculate the surface area of the package by using volume of cuboid.
Formula used for volume of cuboid is:
[tex]V=2(lb+bh+hl)[/tex]
where,
V = volume of package
l = length of package = [tex]2\frac{1}{3}inch=\frac{7}{3}inch[/tex]
b = width of package = [tex]8\frac{1}{2}inch=\frac{17}{2}inch[/tex]
h = height of package = [tex]6\frac{3}{4}inch=\frac{27}{4}inch[/tex]
Now put all the given values in the above formula, we get:
[tex]V=2\times [(\frac{7}{3}\times \frac{17}{2})+(\frac{17}{2}\times \frac{27}{4})+(\frac{27}{4}\times \frac{7}{3})][/tex]
[tex]V=2\times [\frac{119}{6}+\frac{459}{8}+\frac{63}{4}][/tex]
[tex]V=185.9inch^3[/tex]
Therefore, the surface area of the package is, [tex]185.9inch^3[/tex]