Respuesta :
The answer is: " 471 cm² " .
_____________________________________________________
The formula for the surface area, "S.A.", of a "cylinder":
S.A. = 2 π r² + 2 π r h ;
in which:
"S.A." = "surface area" of the cylinder; for which we wish to solve;
π = 3.14 (approximation we shall use) ;
r = radius = 5 cm (given; from figure);
h = height = 2 cm (given; from figure);
______________________________________
To solve for the surface area, "S.A." . let us plug in our known values, and solve:
S.A. = 2 π r² + 2 π r h ;
S.A. = 2 * (3.14) * (5 cm)² + 2 * (3.14) * (5 cm) * 10 cm) ;
= 2 * (3.14) * (5²) * (cm²) + 2 * (3.14) * 5* 10 * cm² ;
= 2 * (3.14) * (25) * (cm²) + 2 * (3.14) * 5* 10 * cm² ;
= 157 cm² + 314 cm² ;
= 471 cm² .
________________________________________________
The answer is: " 471 cm² " .
________________________________________________
_____________________________________________________
The formula for the surface area, "S.A.", of a "cylinder":
S.A. = 2 π r² + 2 π r h ;
in which:
"S.A." = "surface area" of the cylinder; for which we wish to solve;
π = 3.14 (approximation we shall use) ;
r = radius = 5 cm (given; from figure);
h = height = 2 cm (given; from figure);
______________________________________
To solve for the surface area, "S.A." . let us plug in our known values, and solve:
S.A. = 2 π r² + 2 π r h ;
S.A. = 2 * (3.14) * (5 cm)² + 2 * (3.14) * (5 cm) * 10 cm) ;
= 2 * (3.14) * (5²) * (cm²) + 2 * (3.14) * 5* 10 * cm² ;
= 2 * (3.14) * (25) * (cm²) + 2 * (3.14) * 5* 10 * cm² ;
= 157 cm² + 314 cm² ;
= 471 cm² .
________________________________________________
The answer is: " 471 cm² " .
________________________________________________