Respuesta :
Let's call [tex]C_{eq}[/tex] the equivalent capacitance of the circuit. The relationship between the capacitance, the charge Q in the circuit and the potential difference V applied on the capacitor is
[tex]C_{eq}= \frac{Q}{V} [/tex]
Using [tex]Q=3.5 \cdot 10^{-4}C[/tex] and [tex]V=5.55 V[/tex], we find
[tex]C_{eq}= \frac{3.5 \cdot 10^{-4}C}{5.5 V} =6.4 \cdot 10^{-5}F[/tex]
In reality, the circuit consists of 3 capacitors in parallel, each one having same capacitance C. When 3 capacitors are connected in parallel, their equivalent capacitance is:
[tex]C_{eq}=C+C+C=3C[/tex]
We know [tex]C_{eq}[/tex], so we can find C:
[tex]C= \frac{C_{eq}}{3}= \frac{6.4 \cdot 10^{-5}F}{3} =2.1 \cdot 10^{-5}F [/tex]
[tex]C_{eq}= \frac{Q}{V} [/tex]
Using [tex]Q=3.5 \cdot 10^{-4}C[/tex] and [tex]V=5.55 V[/tex], we find
[tex]C_{eq}= \frac{3.5 \cdot 10^{-4}C}{5.5 V} =6.4 \cdot 10^{-5}F[/tex]
In reality, the circuit consists of 3 capacitors in parallel, each one having same capacitance C. When 3 capacitors are connected in parallel, their equivalent capacitance is:
[tex]C_{eq}=C+C+C=3C[/tex]
We know [tex]C_{eq}[/tex], so we can find C:
[tex]C= \frac{C_{eq}}{3}= \frac{6.4 \cdot 10^{-5}F}{3} =2.1 \cdot 10^{-5}F [/tex]
The equivalent capacitance of the number of capacitance connected in the parallel series is the sum of the individual capacitance.
The capacitance of each capacitor is [tex]2.1\times10^{-5}\rm F[/tex].
What is equivalent capacitance of parallel series?
The equivalent capacitance of the number of capacitance connected in the parallel series is the sum of the individual capacitance.
It can be given as,
[tex]C_{eq}=\dfrac{Q}{V}[/tex]
Here, [tex]Q[/tex] is the charge and [tex]V[/tex] is the voltage.
Given information-
The voltage of the battery is 5.55 V.
The value of charge is [tex]3.45\times10^{-4}[/tex] C.
Put the values in the above formula as,
[tex]C_{eq}=\dfrac{3.45\times10^{-4}}{5.55}\\C_{eq}=6.4\times10^{-4}\rm F[/tex]
Given that the three uncharged capacitors with equal capacitance are combined in parallel.
For the parallel connection of the capacitance the equivalent capacitance can be given as,
[tex]C_{eq}=C+C+C[/tex]
Here, [tex]C[/tex] is the capacitance of each capacitors. Put the values,
[tex]6.4\times10^{-4}\rm =3C\\C=2.1\times10^{-5}\rm F[/tex]
Hence the capacitance of each capacitor is [tex]2.1\times10^{-5}\rm F[/tex].
Learn more about the equivalent capacitance here;
https://brainly.com/question/5626146