Respuesta :

Okay, lets solve for h

First off lets flip the equation \frac{1}{9g} +\frac{1}{9h} +\frac{-1}{9k} =f

Now add (-1)/9g to both sides
\frac{1}{9g} +\frac{1}{9h} +\frac{1}{9k} +\frac{-1}{9g} =f+\frac{-1}{9g} 

\frac{1}{9h} +=\frac{-1}{9k} =f+\frac{-1}{9g} 

Now add \frac{1}{9k}  to both sides. 
\frac{1}{9h} +\frac{-1}{9k} +\frac{-1}{9k} =f+\frac{-1}{9g} \frac{1}{9k} 
\frac{1}{9h} =f+\frac{-1}{9g} +\frac{1}{9k} 

Last you divide both sides by \frac{1}{9} 

1/9h/1/9=f+-1/9g+1/9k/1/9

h=9f-9+k

Answer: h=9f-g+k