the first step for solving (2[tex] x^{6} [/tex]) × (3[tex] x^{ \frac{1}{2} } [/tex]) is to remove the first set of parenthesis
2[tex] x^{6} [/tex] × (3[tex] x^{ \frac{1}{2} } [/tex])
then remove the second set of parenthesis
2[tex] x^{6} [/tex] × 3[tex] x^{ \frac{1}{2} } [/tex]
calculate the product of the two numbers
6[tex] x^{ \frac{13}{2} } [/tex]
using [tex] a^{ \frac{m}{n} } [/tex] = [tex] \sqrt[n] a^{m} } [/tex] ,, transform the expression
6[tex] \sqrt{x^{13} } [/tex]
finally,, simplify the radical
6[tex] x^{6} [/tex]√x
this means that the correct answer to your question is 6[tex] x^{6} [/tex]√x
let me know if you have any further questions
:)