Respuesta :

a(c -b)= d
⇒ c -b= d/a (inverse operation)
⇒ c= d/a+ b (inverse operation)

Final answer: c= d/a+ b.
Leader
a(c-b) = d

Use the distributive property, which states: x(y-z) = xy - xz

a(c-b) = ac - ab

ac - ab = d

Add ab on both sides

ac = d + ab

Divide both sides by a to isolate c

[tex]\boxed{\bf{c=\frac{d+ab}{a} =\frac{d}{a} +b}}[/tex]