Respuesta :
a(c -b)= d
⇒ c -b= d/a (inverse operation)
⇒ c= d/a+ b (inverse operation)
Final answer: c= d/a+ b.
⇒ c -b= d/a (inverse operation)
⇒ c= d/a+ b (inverse operation)
Final answer: c= d/a+ b.
a(c-b) = d
Use the distributive property, which states: x(y-z) = xy - xz
a(c-b) = ac - ab
ac - ab = d
Add ab on both sides
ac = d + ab
Divide both sides by a to isolate c
[tex]\boxed{\bf{c=\frac{d+ab}{a} =\frac{d}{a} +b}}[/tex]
Use the distributive property, which states: x(y-z) = xy - xz
a(c-b) = ac - ab
ac - ab = d
Add ab on both sides
ac = d + ab
Divide both sides by a to isolate c
[tex]\boxed{\bf{c=\frac{d+ab}{a} =\frac{d}{a} +b}}[/tex]