Respuesta :
For cosФ×sinФ =0, then either cosФ or sin Ф must be zero.
cos 90 = cos 270 = 0
sin 0 = sin 180 = sin 360 = 0.
So, the values that would give you 0 are:
1. cos 90 sin Ф
2. cos 270sin Ф
3. cos Ф sin 0
4. cos Ф sin 180 and
5 cos Ф sin 360.
cos 90 = cos 270 = 0
sin 0 = sin 180 = sin 360 = 0.
So, the values that would give you 0 are:
1. cos 90 sin Ф
2. cos 270sin Ф
3. cos Ф sin 0
4. cos Ф sin 180 and
5 cos Ф sin 360.
The values that would give 0 are: 1. cos 90 sin Ф, 2. cos 270 sin Ф, 3. cos Ф sin 0, 4. cos Ф sin 180 , 5 cos Ф sin 360.
What are trigonometric identities?
Trigonometric identities are the functions that include trigonometric functions such as sine, cosine, tangents, secant, and, cot.
For cosФ × sinФ = 0, then either cosФ or sin Ф must be zero to get the product zero.
WE know that the value of trigonometric function;
cos 90 = cos 270 = 0
Also, sin 0 = sin 180 = sin 360 = 0.
Thus,
The values that would give 0 are:
1. cos 90 sin Ф
2. cos 270 sin Ф
3. cos Ф sin 0
4. cos Ф sin 180
5 cos Ф sin 360.
Learn more about trigonometric;
https://brainly.com/question/21286835
#SPJ5