Respuesta :
Answer: (3x-5)(3x-5)
Step-by-step explanation:
A perfect square trinomial is a polynomial that can be expressed in the form of the square of binomial.
Or that is a square root of a binomial.
[tex](3x-5)(3x-5)= (3x-5)^2[/tex]
where 3x - 5 is a bionomial,
⇒ (3x-5)(3x-5) is a perfect square trinomial,
[tex](3x-5)(5-3x) = -(3x-5)(3x-5)=-(3x-5)^2[/tex]
But, [tex]-(3x-5)^2[/tex] is not a perfect square root of a binomial,
⇒ (3x-5)(5-3x) is not a perfect square trinomial,
[tex](3x-5)(3x+5) = (3x)^2-(5)^2=9x^2-25[/tex]
But, [tex]9x^2-25[/tex] is not a perfect square root of a binomial,
⇒ (3x-5)(3x+5) is not a perfect square trinomial,
[tex](3x-5)(-3x-5)=-(3x-5)(3x+5) = -[(3x)^2-(5)^2]=-9x^2+25[/tex]
But, [tex]-9x^2+25[/tex] is not a perfect square root of a binomial,
⇒ (3x-5)(-3x-5) is not a perfect square trinomial,