contestada

Choose the correct conic section to fit the equation. x^2/36-y^2=1 Circle Ellipse Parabola Hyperbola

Respuesta :

Think its hyperbola. Dont quote me.

Choose the correct conic section to fit the equation. x^2/36-y^2=1 Circle Ellipse Parabola Hyperbola

Solution:

The general equation of circle is:-

(x-h)²+(y-k)=r²

The general equation of ellipse is:-

[tex] \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{{b^{2}}}=1 [/tex]

The general equation of parabola is:-

y = a(x-h)²+k

The general equation of hyperbola is:-

[tex]\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{{b^{2}}}=1[/tex]

The equation of conic section is: x^2/36-y^2=1

[tex]\frac{(x-0)^{2}}{36}-\frac{(y-0)^{2}}{1}}=1[/tex]

[tex]\frac{(x-0)^{2}}{6^{2}}-\frac{(y-0)^{2}}{{1^{2}}}=1[/tex]

Hence, this is hyperbola.

Answer: Hyperbola Option (D)