Respuesta :

Answer:

The area increase by 225%

Step-by-step explanation:

attachment of a triangle

The area of a triangle equilateral is calculated with the next formula:

A=[tex]\frac{a*h}{2}[/tex]

[tex]h^{2} +(\frac{a}{2})^{2}[/tex]=[tex]a^{2}[/tex]

[tex]h^{2} = a^{2} - \frac{a^{2} }{4}[/tex]= [tex]\frac{a^{2} }{4}[/tex]*3

h=[tex]\sqrt{\frac{a^{2}*3 }{4} }[/tex]

h=[tex]\frac{\sqrt{3}*a }{2}[/tex]

replacing in the A equation:

A=[tex]\frac{a*\sqrt{3}*a }{2*2}[/tex]

A=[tex]\frac{\sqrt{3}*a^{2} }{4}[/tex]

Now each side increse by 50% ⇒ a=1.5a

A= [tex]\frac{\sqrt{3}*(1.5a)^{2} }{4}[/tex]

A=[tex]\frac{\sqrt{3}*a^{2}* 2.25 }{4}[/tex]

A=2.25 * [tex]\frac{\sqrt{3}*a^{2} }{4}[/tex]

It means that the area incrase by 225%

Ver imagen muriyabi