Show that the Fibonacci numbers satisfy the recurrence relation fn = 5fn−4 + 3fn−5 for n = 5, 6, 7, . . . , together with the initial conditions f0 = 0, f1 = 1, f2 = 1, f3 = 2, and f4 = 3. Use this recurrence relation to show that f5n is divisible by 5, for n = 1, 2, 3, . . . .

Respuesta :

Answer with step-by-step explanation:

We are given that the recurrence relation

[tex]f_n=5f_{n-4}+3f_{n-5}[/tex]

for n=5,6,7,..

Initial condition

[tex]f_0=0,f_1=1,f_2=1,f_3=2,f_4=3[/tex]

We have to show that Fibonacci numbers satisfies the recurrence relation.

The recurrence relation of Fibonacci numbers

[tex]f_n=f_{n-1}+f_{n-2}[/tex],[tex]f_0=0,f_1=1[/tex]

Apply this

[tex]f_n=(f_{n-2}+f_{n-3})+f_{n-2}=2f_{n-2}+f_{n-3}[/tex]

[tex]f_n=2(f_{n-3}+f_{n-4})+f_{n-3}=3f_{n-3}+2f_{n-4}[/tex]

[tex]f_n=3(f_{n-4}+f_{n-5})+2f_{n-4}=5f_{n-4}+3f_{n-5}[/tex]

Substitute n=2

[tex]f_2=f_1+f_0=1+0=1[/tex]

[tex]f_3=f_2+f_1=1+1=2[/tex]

[tex]f_4=f_3+f_2=2+1=3[/tex]

Hence, the Fibonacci numbers satisfied the given recurrence relation .

Now, we have to show that [tex]f_{5n}[/tex] is divisible by 5 for n=1,2,3,..

Now replace n by 5n

[tex]f_{5n}=5f_{5n-4}+3f_{5n-5}[/tex]

Apply induction

Substitute n=1

[tex]f_5=5f_1+3f_0=5+0=5[/tex]

It is true for n=1

Suppose it is true for n=k

[tex]f_{5k}=5f_{5k-4}+3f_{5k-5}[/tex] is divisible 5

Let [tex]f_{5k}=5q[/tex]

Now, we shall prove that for n=k+1 is true

[tex]f_{5k+5}=5f_{5k+5-4}+3f_{5k+5-5}=5f_{5k+1}+3f_{5k}=5f_{5k+1}+3(5q)[/tex]

[tex]f_{5k+5}=5(f_{5k+1}+3q)[/tex]

It is multiple of 5 .Therefore, it is divisible by 5.

It is true for n=k+1

Hence, the [tex]f_{5n}[/tex] is divisible by 5 for n=1,2,3,..