Answer:
x = 0
Explanation:
We want to solve
[tex]\frac{1}{3}\mleft(6x-5\mright)-x=\frac{1}{3}-2(x+1)[/tex]for x.
Now expanding both sides gives
[tex]\frac{6x}{3}-\frac{5}{3}-x=\frac{1}{3}-2x-2[/tex]now further simplification gives
[tex](\frac{6}{3}x-x)-\frac{5}{3}=\frac{1}{3}-2x-2[/tex][tex]\Rightarrow x-\frac{5}{3}=\frac{1}{3}-2x-2[/tex]Now adding 5/3 to both sides gives
[tex]x=\frac{1}{3}-2x-2+\frac{5}{3}[/tex]then adding 2x to both sides gives
[tex]x+2x=\frac{1}{3}+\frac{5}{3}-2[/tex][tex]\Rightarrow3x=\frac{6}{3}-2[/tex][tex]3x=2-2[/tex][tex]3x=0[/tex][tex]\Rightarrow\boxed{x=0}[/tex]which is our answer!